Time Stamps in Data Files

Jason St. John 2019.01.13 Accelerator Al Group

Compare to naive 15 Hz reference. Example: Jan 7

From 2020-01-07+00:00:00 to 2020-01-08+00:00:00

For all parameters in the data, compare time stamps to a naive, 64-bit-precise 15 Hz reference.

Certain **outlier** parameters' variation dominates, setting the color scale.

>150 s in 24 hr

Hard to see any structure to the **inliers**.

Following is an initial investigation into this behavior in our data.

Compare to naive 15 Hz reference. Example: Jan 7

Outliers only. Collective jumps (I:IB solo) Also as line plot:

Compare to naive 15 Hz reference. Example: Jan 7

Inliers only. Collective drifting. Also as line plot:

OK was that a typical day? Here's 12-1 to 12-30

OK was that a typical day? Here's 12-1 to 12-12

others jumps are the norm (but not the rule).

→ Possible causes?

How would we (/should we) best keep tabs on this, in an automated monitoring system?

Fine time structure, too:

(Example: Jan 7)

100,000 seconds

Fine time structure, too:

(Example: Jan 7)

10,000 seconds

Collective drift has impact on all parameters, even those subject to apparent jumps.

So how are the jumping channels special?

Fine time structure, too:

(Example: Jan 7)

1,000 seconds

Periodic spikes (jump, then reversal) ~0.015 s lasting several 15 Hz ticks

Plus quicker sawtooth ~0.002 s

Implications for operating (and training!) LSTM nets

- Jumps & drifts: Entirely an artifact of how Logger & whole system work together?
 - *Or* would an online data customer really see any of this variation in parameter value update times?
 - Want to get it right:

 Net training environment should mimic operation environment closely.
- At the very least, we could feed the time (epoch µs for instance) as part of the input vector?
- Does the value of B:LINFRQ predict this? Especially the slow drifts?
 - Improve realism using timestamp of \$0C?
- Implications for using Param data and Event timing:
 - Event data also timestamped (plus ms since \$00 event)
 - Can we take event timestamps at face value when training nets with events & parameter as inputs?